If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-30x-1056=0
a = 3; b = -30; c = -1056;
Δ = b2-4ac
Δ = -302-4·3·(-1056)
Δ = 13572
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{13572}=\sqrt{36*377}=\sqrt{36}*\sqrt{377}=6\sqrt{377}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-30)-6\sqrt{377}}{2*3}=\frac{30-6\sqrt{377}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-30)+6\sqrt{377}}{2*3}=\frac{30+6\sqrt{377}}{6} $
| 59+(2x+7)=90 | | -11=-0.2m-9 | | 4(8k=2)=-4(6-7k) | | 40+(3x-4)=90 | | 26=2(y-5)-6y | | 25=2a+11 | | x=128 | | 60p^2-28p-16=0 | | (x-4)^2-3(x-4)^2=0 | | x/139.2=-58 | | 7x+19=9x-3 | | 17x-65=-3x+15 | | 2/3(x)=4/5=2 | | 4x-10=270 | | 22x-2=x-11 | | 6(n-6)=6n-43 | | -5(7r+6)+6(6r+4)=-r+8r | | 42-6y-y=7 | | -5(7r+6)+6(r+4)=-r+8r | | -1.3-6y-6.7-y=-6y-4.1 | | 3x-20=230 | | 5-12x=12-5x | | 2X^2+x=+15 | | 3x-7x*3=27 | | 2y+8y=18 | | x+10=150 | | Y÷3-5y÷6=-1÷2 | | 8(z-5)-34=-2 | | 2x-3=14x-43 | | 10x-0.4=2×-3.6 | | 3(0.3m+6)m=75 | | 5(x+4)=2x+35 |